An acceleration procedure for optimal first-order methods
نویسندگان
چکیده
We introduce in this paper an optimal first-order method that allows an easy and cheap evaluation of the local Lipschitz constant of the objective’s gradient. This constant must ideally be chosen at every iteration as small as possible, while serving in an indispensable upper bound for the value of the objective function. In the previously existing variants of optimal first-order methods, this upper bound inequality was constructed from points computed during the current iteration. It was thus not possible to select the optimal value for this Lipschitz constant at the beginning of the iteration. In our variant, the upper bound inequality is constructed from points available before the current iteration, offering us the possibility to set the Lipschitz constant to its optimal value at once. This procedure, even if efficient in practice, presents a higher worse-case complexity than standard optimal first-order methods. We propose an alternative strategy that retains the practical efficiency of this procedure, while having an optimal worse-case complexity. We show how our generic scheme can be adapted for smoothing techniques, and perform numerical experiments on large scale eigenvalue minimization problems. As compared with standard optimal first-order methods, our schemes allows us to divide computation times by two to three orders of magnitude for the largest problems we considered.
منابع مشابه
MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II
In this paper, a procedure has been introduced to the multi-objective optimal design of semi-active tuned mass dampers (SATMDs) with variable stiffness for nonlinear structures considering soil-structure interaction under multiple earthquakes. Three bi-objective optimization problems have been defined by considering the mean of maximum inter-story drift as safety criterion of structural compone...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملAn optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate
In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The o...
متن کاملOPTIMIZATION OF ENDURANCE TIME ACCELERATION FUNCTIONS FOR SEISMIC ASSESSMENT OF STRUCTURES
Numerical simulation of structural response is a challenging issue in earthquake engineering and there has been remarkable progress in this area in the last decade. Endurance Time (ET) method is a new response history based analysis procedure for seismic assessment and structural design in which structures are subjected to a gradually intensifying dynamic excitation and their seismic performanc...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 29 شماره
صفحات -
تاریخ انتشار 2014